Total pressure of mixture (3.0 mol He and 4.0 mol Ne) is 97.4 kPa. Find the partial pressure of each gas	Total pressure of mixture (3.0 mol He and 4.0 mol Ne) is 97.4 kPa. Find the partial pressure of each gas	Total pressure of mixture (3.0 mol He and 4.0 mol Ne) is 97.4 kPa. Find the partial pressure of each gas	Total pressure of mixture (3.0 mol He and 4.0 mol Ne) is 97.4 kPa. Find the partial pressure of each gas
80.0 g each of He, Ne, and Ar are in a container. The total pressure is 780 mm Hg. Find each gas's partial pressure.	80.0 g each of He, Ne, and Ar are in a container. The total pressure is 780 mm Hg. Find each gas's partial pressure.	80.0 g each of He, Ne, and Ar are in a container. The total pressure is 780 mm Hg. Find each gas's partial pressure.	80.0 g each of He, Ne, and Ar are in a container. The total pressure is 780 mm Hg. Find each gas's partial pressure.
Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container C ("/vol. 2.0 L). Find total pres. of mixture in C.	Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container C (w/vol. 2.0 L). Find total pres. of mixture in C.	Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container C ("/vol. 2.0 L). Find total pres. of mixture in C.	Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container C ("/vol. 2.0 L). Find total pres. of mixture in C.
Find total pressure of mixture in Container D. B C D 1.3 L 2.6 L 3.8 L 2.7 atm X atm	Find total pressure of mixture in Container D. B C D 1.3 L 2.6 L 3.8 L 2.7 atm X atm	Find total pressure of mixture in Container D. B C D 1.3 L 2.6 L 3.8 L 2.7 atm X atm	Find total pressure of mixture in Container D. B C D 1.3 L 2.6 L 3.8 L 2.3 L 3.2 atm 1.4 atm 2.7 atm X atm
Gas 1 Gas 1 H ₂ O	Gas 1 Gas 1 H ₂ O	Gas 1 Water vapor H ₂ O	Gas 1 H ₂ O
Hydrogen gas is collected over water at 22°C. Find the pressure of the dry gas if the atmospheric pressure is 708 mmHg.	Hydrogen gas is collected over water at 22°C. Find the pressure of the dry gas if the atmospheric pressure is 708 mmHg.	Hydrogen gas is collected over water at 22°C. Find the pressure of the dry gas if the atmospheric pressure is 708 mmHg.	Hydrogen gas is collected over water at 22°C. Find the pressure of the dry gas if the atmospheric pressure is 708 mmHg.
A gas is collected over water at a temp of 35°C while the barometric pressure is 0.976 atm. What is the partial pressure of the dry gas?	A gas is collected over water at a temp of 35°C while the barometric pressure is 0.976 atm. What is the partial pressure of the dry gas?	A gas is collected over water at a temp of 35°C while the barometric pressure is 0.976 atm. What is the partial pressure of the dry gas?	A gas is collected over water at a temp of 35°C while the barometric pressure is 0.976 atm. What is the partial pressure of the dry gas?
N-33	N-33	N-33	N-33